Seminář Ústavu termomechaniky

je organizován Ústavem termomechaniky AV ČR, v. v. i.
obvykle každou první středu v měsíci od 10:00
v posluchárnách B nebo A (výjimečně C - klub) v hlavní budově Ústavu termomechaniky AV ČR, v. v. i., (kontaktní informace zde)


Program semináře: 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014


Příští přednášky:

pondělí 17. února 2020 v 10:00, posluchárna B

Experimental and Numerical Procedures for Calibration of Advanced Phenomenological Models of Metal Plasticity

Ing. Slavomír Parma, Ph.D.,
Ústav termomechaniky AV ĆR, v. v. i.

The talk summarizes the research done within author’s internship at the Northern Arizona University, AZ, USA. Elastic domain of metals is bounded by the yield surface. When the material is loaded over the elastic limit, changes in size, position, and shape of the yield surface are observed. The new experimental procedure that employs hollow tubular specimens was developed to detect these phenomena. In the experiment, specimens are axially preloaded over the initial elastic limit to develop a distorted shape of the yield surface and consequently loaded by a sequence of combined axial load and torque to carefully probe the boundary of the elastic domain. This experimental methodology requires (i) a real-time evaluation of the effective plastic strain, and (ii) a real-time conditional control of the experiment.

The numerical part of this research focused on the calibration of current models of phenomenological plasticity on the experimental data of multiaxial ratcheting. These kinds of models usually feature about 10–20 material parameters and need to be calibrated numerically. The proposed calibration procedure employs numerical integration of models combined with the optimization method based on the gradient descent. The algorithm is coded in FORTRAN language.

Tato přednáška se koná v návaznosti na projekt OP VVV EF16_027/0008500 - Podpora zahraničních stáží pracovníků Ústavu termomechaniky AV ČR (2018-2020, MSM/EF)

čtvrtek 27. února 2020 ve 14:00, posluchárna B

Structural Design and Analysis at OHB System AG

Dr. Markus Geiß,
Structural and Thermal Development Engineer,
OHB System AG, Weßling, Germany

This lecture gives an introduction to the field of structural design and analysis of optical space instruments at OHB System AG. OHB System AG is one of the three leading space companies in Europe which specializes in design and manufacturing of high-tech solutions for space, science and industrial applications. To start the lecture, special considerations of spacecraft structures are discussed and the typical tasks of a structural development engineer are presented. Next, design highlights of optical instrument structures and their analysis methodologies are reviewed. After a brief discussion of topology optimization and additive manufacturing used for design and manufacturing of optical space instruments, thermos-elastic aspects of spacecraft structures are addressed. Finally, the process of assembly, integration and testing (AIT) is discussed, which typically concludes the hardware development-cycle of space structures.

Footer menu

© 2008 – 2018 Ústav termomechaniky AV ČR, v. v. i.     Facebook  YouTube  RSS